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Stable isotopes of oxygen, nitrogen, and boron were used to identify the sources of
nitrate (NO3

−) in submarine groundwater discharge (SGD) into a large tidal estuary
(Long Island Sound, NY, United States). Potential contaminants such as manure, septic
waste and fertilizer overlap in δ15N and δ18O but have been shown to have distinctive
δ11B in non-coastal settings. Two distinct subterranean estuaries were studied with
different land-use up gradient, representative of (1) mixed medium-density residential
housing and (2) agriculture. These sites have overlapping δ15N and δ18O measurements
in NO3

− and are unable to discriminate between different N sources. Boron isotopes and
concentrations are measurably different between the two sites, with little overlap. The
subterranean estuary impacted by mixed medium-density residential housing shows
little correlation between δ11B and [B] or between δ11B and salinity, demonstrating
that direct mixing relationships between fresh groundwater and seawater were unlikely
to account for the variability. No two sources could adequately characterize the δ11B
of this subterranean estuary. Groundwater N at this location should be derived from
individual homeowner cesspools, although measured septic waste has much lower δ11B
compared to the coastal groundwaters. This observation, with no trend in δ11B with
[B] indicates multiple sources supply B to the coastal groundwaters. The agricultural
subterranean estuary displayed a positive correlation between δ11B and [B] without any
relationship with salinity. Binary mixing between sea spray and fertilizer can reasonably
explain the distribution of B in the agricultural subterranean estuary. Results from this
study demonstrate that δ11B can be used in combination with δ15N to trace sources of
NO3

− to the subterranean estuary if source endmember isotopic signatures are well-
constrained, and if the influence of seawater on δ11B signatures can be minimized or
easily quantified.
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INTRODUCTION

Submarine groundwater discharge (SGD) is an important
vector for the delivery of nutrients to the coastal ocean
(e.g., Taniguchi et al., 2019). While once thought to be a
relatively minor component of the overall coastal nitrogen
budget, studies have shown that non-point-sources of diffuse
SGD can supply as much nitrogen into coastal waters as
rivers (Slomp and Van Cappellen, 2004; Kroeger and Charette,
2008; Rodellas et al., 2015). The extent of SGD’s effect on
coastal water quality has been difficult to establish because
SGD consists of a fresh groundwater component and a
seawater component that mix in a biogeochemically reactive
subterranean estuary (STE; Moore, 1999; Burnett et al.,
2003; Slomp and Van Cappellen, 2004). The terrestrial, fresh
component of SGD (FSGD) represents a source of new N
to coastal waters and, if significant, can help sustain primary
production and even coastal algal blooms (Gobler and Sanudo-
Wilhelm, 2001), thus fueling coastal eutrophication (Paerl, 1995;
Howarth and Marino, 2006).

Isotopes of N and O in nitrate (NO3
−) have a proven utility

in sorting out the sources of nitrogen delivered to groundwaters
(Aravena et al., 1993; Bateman and Kelly, 2007; Bannon and
Roman, 2008; Kendall et al., 2008). In particular, δ15N-NO3

−

and δ18O-NO3
− can distinguish between NO3

− fertilizers,
atmospheric NO3

−, manure and sewage-derived NO3
− (Kendall,

1998; Kendall et al., 2008). However, the overlapping δ15N
signatures of soil N, animal and human waste, and nitrification
of NH4

+ in fertilizer and precipitation, as well as the biological
modification of nitrogen and oxygen isotopes, can limit their
utility in fully identifying anthropogenic sources of nitrogen.
In addition, the speciation and attenuation of nitrogen may be
modified in the STE before it reaches the coastal ocean (Kroeger
and Charette, 2008; Erler et al., 2014). For example, changes in
dissolved oxygen (DO) in groundwater may cause changes in
N and O isotopic composition by nitrifying NH4

+ to NO3
−

or denitrifying NO3
− to N2. NH4

+ volatilization and nitrogen
remineralization may also alter N speciation (Charbonnier et al.,
2013) and isotopic composition. Therefore, the groundwater
isotopic signatures of N and O of an inland groundwater
source may differ from that delivered to the coastal ocean,
making it difficult to track anthropogenic sources of NO3

−

through the STE (Anschutz et al., 2016). The addition of other
tracers may be useful in resolving these problems, including
boron (B) isotopes.

Boron is added to groundwater both naturally and with
contaminants such as NO3

− in association with borate minerals
used in fertilizers and detergents through septic systems or
sewage (Barth, 1998; Vengosh, 1998; Vengosh et al., 1999).
B is added to groundwater naturally via precipitation and
water-rock interactions that include sorption reactions with
clay minerals and iron hydroxides (Demetriou and Pashalidis,
2012). Anthropogenic sources of B to groundwaters include
fertilizers and septic systems or sewage (Vengosh et al., 1999).
Plants require B as an essential micronutrient for growth and
therefore borate minerals are commonly added to commercial
fertilizers (Shireen et al., 2018). Detergents and household

cleaning products contain elevated [B] that is subsequently
transported to septic systems.

Boron is highly soluble in groundwater and is therefore
a co-migrant of groundwater NO3

−, including fertilizer and
septic sources. B is not removed by wastewater treatment nor
is it affected by processes that alter N concentration, such
as nitrification and denitrification; however, B speciation is
controlled by pH. At low pH boric acid (BOH3) is the dominant
species, while at high pH borate (BOH4

−) dominates, with
a pKa of 9.2 in fresh water (McPhail et al., 1972). There
is an isotope fractionation between these species that makes
borate isotopically enriched in 10B. Boric acid is conservative,
but borate has a strong affinity for positively charged particle
surfaces (e.g., clays) because of its negative charge (Palmer
et al., 1987). This can result in changes in the isotope ratio
as B can be fractionated by processes such as adsorption and
desorption of borate onto iron oxides and clay minerals (McPhail
et al., 1972; Goldberg and Glaubig, 1985; Glavee et al., 1995;
Lemarchand et al., 2007; Demetriou and Pashalidis, 2012).
However, these processes are pH dependent, where adsorption
is greatest at pH 9 and decreases to less than 10% adsorption
at pH 5 and lower (Bloesch et al., 1987; De La Fuente and
Camacho, 2009; Demetriou and Pashalidis, 2012). The large
relative mass differences between 11B and 10B means that isotope
fractionation leads to a wide range of isotopic values in nature.
The combined use of δ11B and δ15N to trace NO3

− sources has
been successfully applied in terrestrial and aquatic environments
(Komor, 1997; Widory et al., 2004, 2005, 2013; Seiler, 2005;
Bronders et al., 2012; Lindenbaum, 2012; Briand et al., 2013,
2017; Eppich et al., 2013; Saccon et al., 2013; Ransom et al.,
2016; Guinoiseau et al., 2018; Kruk et al., 2020); however, the
use of δ11B and δ15N has yet to be tested in the STE of
coastal systems.

Site Description
Long Island Sound (LIS) is a coastal estuary that lies between
the south shore of Connecticut and the north shore of Long
Island, NY, United States (Figure 1). The southern shoreline
of LIS is cut into an unconfined, unconsolidated, sole-source
aquifer (the Upper Glacial Aquifer) of glacial deposits with a
hydraulic conductivity between 7 and 70 m d−1 (Buxton and
Modica, 1992). The hydraulic gradient has been estimated to be
0.001 (McClymonds and Franke, 1972) with a vertical hydraulic
gradient between 0.02 and 0.08 in the upper meter of sediment
at the shoreline. Under these conditions, significant SGD has
been documented along the shores of LIS (Durand, 2014; Garcia-
Orellana et al., 2014; Bokuniewicz et al., 2015; Young et al., 2015;
Tamborski et al., 2017a,b). FSGD-driven N loads to Smithtown
Bay (1–13∗106 mol N y−1), an embayment of LIS, rivals that
of the local Nissequogue River (4–10∗106 mol N y−1) and
has been implicated as the primary new N source to LIS
(Tamborski et al., 2017a).

This study focuses on two distinct STE’s along the north
shore of Long Island at Callahans Beach (adjacent to Smithtown
Bay) and at Iron Pier Beach (on the North Fork of Long
Island; Figure 1). Anthropogenic contaminant sources including
cesspools, septic systems and fertilizers are implicated in
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FIGURE 1 | Long Island, NY, United States (A) and the subterranean estuary (STE) study sites of Callahans Beach (B) and Iron Pier Beach (C), indicated by yellow
stars. A survey of water samples from groundwater wells, spring-fed creeks (Mill Ponds) and precipitation-fed ponds (Kettle Ponds) are shown in panel (A).

producing elevated NO3
− levels seen in Long Island’s unconfined

Upper Glacial Aquifer (Bellone, 2015). Land cover within the
watershed of Callahans Beach is composed of medium-density
residential housing (2770 people km−2; town of Fort Salonga);
the beach itself is directly down-gradient from a golf course
(Figure 1). This site has been well studied (Tamborski et al.,
2015, 2017a,b) and was chosen to represent a shoreline impacted
by mixed anthropogenic N sources (fertilizer, manure and/or
septic); there was no evidence of groundwater denitrification
or nitrogen attenuation in the STE (Tamborski et al., 2017a).
At Callahans Beach, SGD rates vary tidally and can reach
50 cm d−1 near low tide (Tamborski et al., 2015). Land cover
within the watershed of Iron Pier Beach is predominantly used
for agriculture and this lower population density site (470 people
km−2; town of Northville) was chosen to represent a shoreline
impacted by a fertilizer N source. At Iron Pier Beach, SGD
was measured at rates up to 75 cm d−1 via manual seepage
meter measurements (Brown, 2018). Identifying the sources of
nitrogen in groundwater is of particular importance to managers
here because an effort to reduce nitrogen in Suffolk County,
NY, United States, called “Reclaim our Water Initiative,” is
predicated on nitrogen pollution from septic systems (Suffolk
County Government, 2019).

MATERIALS AND METHODS

Field Methods
Multi-level cluster wells were installed above the spring high
tide elevation at Callahans Beach in 2014 at depths of 3.0 m,
5.0 m, 6.0 m, and 7.0 m below surface, and at Iron Pier
Beach at 1.5 m, 3.0 m, and 4.5 m depths in 2017 using a
track-mounted Geoprobe. Multi-level cluster-well installation
at Callahans Beach is described in Tamborski et al. (2017b).
Groundwater was collected from cluster wells monthly at both
sites using a peristaltic pump, from June to December 2017,
for nutrient analyses. Temperature, conductivity, salinity, DO,
ORP and pH were measured in the field using a YSI-566 multi-
probe. Groundwater samples for N, O, and B isotopic analysis
were collected from June through October. Water samples for
nutrient concentrations and N and O isotopes were filtered in the
field (0.2 µm), collected in 15 mL falcon tubes and kept on ice.
Samples were frozen upon returning to the lab and kept frozen
until analyzed. The water samples for B isotope analysis were
filtered in the field (0.2 µm), collected in 50 mL polypropylene
centrifuge tubes and were kept refrigerated until analyzed.

A variety of possible endmembers were sampled to further
constrain potential B sources. To estimate the contribution
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of B from seawater, we analyzed coastal seawater samples
(n = 10) from Port Jefferson Harbor (Figure 1). Precipitation
was collected from acid cleaned rain gauges on four separate
occasions (at Stony Brook University). Surface waters were
collected from protected precipitation-fed lakes (i.e., kettle
ponds; Pine Barrens region; n = 3) and spring-fed ponds (Mill
Pond and Setauket Pond; n = 8). Private wells (n = 5) in
Smithtown and Old Field were sampled at the houses before the
filter (which was disconnected). Septic waste (n = 3) was collected
from private residences on Long Island with a peristaltic pump
from a pump chamber (immediately downfield from the septic
tank prior to the drain-field) and stored in 1 L plastic containers
with no processing (e.g., no filtering, pH adjustment). All surface
and groundwater samples were collected in acid cleaned 50 mL
polypropylene bottles. The bottles were rinsed with the water
that was being collected and then collected to avoid air space.
Temperature, DO, and salinity were measured at the time of
collection. Samples were prepared for B analyses in the same way
that SGD samples described above were prepared.

Analytical Methods & Endmember
Experiments
In order to obtain δ11B and to estimate how much [B] could be
expected from commercial products, tap water was used to leach
five commonly applied fertilizers, one manure sample purchased
locally and one locally collected Canada goose dropping. The
tap water represents water that would be used for irrigation of
lawns, making the leach a more realistic value for what might be
delivered to groundwater. The fertilizers and manure were put
in 50 mL centrifuge tubes up to the 5 mL mark, filled to the
50 mL mark with tap water and placed on a shaker table at room
temperature for several hours.

Boron concentrations were measured with an Agilent 7500cx
Quadrupole ICP-MS using a standard bracketing routine with
background subtraction. After concentrations were established,
approximately 250 ng of B was separated from the matrix using
Amberlite IRA 743, a B-specific resin. Samples were adjusted
to a pH of ∼9 before adding to the columns, washed with pH
9 adjusted DI water, and eluted with 2% nitric acid following
a modified procedure from Lemarchand et al. (2002). Boron
isotope ratios were measured using a Nu Instruments Plasma
II multi-collector ICP-MS using a standard bracketing routine
that included a background between each sample and standard.
These background measurements were averaged and subtracted
from the sample and standards before using the average of
bracketing standards (NBS 951, which is taken as 0h) to
calculate δ11B. Measurement precision is between 0.5 and 1.0h.
Archived groundwater samples from Callahans Beach, collected
during July 2014 and May 2015, were additionally analyzed
for [B] and δ11B.

Coastal groundwater samples for nitrate concentration
analysis were prepared using a modified vanadium (III)
reduction procedure (Miranda et al., 2001; Doane and Howarth,
2003). Samples for the analysis of ammonium were prepared
and analyzed using a mixed-reagent method (Presley and
Claypool, 1971). Nutrient (NO3

− and NH4
+) concentrations

were measured spectrophotometrically on a BPPBABTECH
Omega series microplate reader. δ15N-NO3

− and δ18O-NO3
−

were measured at the stable isotope facility at the University
of California, Davis by bacterial denitrification assay. Isotope
ratios were measured on a ThermoFinnigan GasBench+ PreCon
trace-gas concentration system interfaced to a ThermoScientific
Delta V Plus isotope-ratio mass spectrometer with measurement
precision of 0.4h for δ15N-NO3

− and 0.5h for δ18O-NO3
−.

Nitrogen isotopes are referenced to air while oxygen isotopes are
referenced to Vienna Standard Mean Ocean Water (VSMOW).
Nitrite was removed prior to analysis (Granger and Sigman,
2009). November and December groundwater samples were not
analyzed for δ15N-NO3

− and δ18O-NO3
−.

RESULTS

Possible Sources – Boron
Natural Sources
The survey of local water sources reveals a range in [B] and
large variability in δ11B (Table 1). Rainwater varied from 6 to
13 ppb with a δ 11B between 12.7 and 33.4h (Table 1). Kettle
ponds in the Pine Barrens region, which is a protected part
of the Long Island watershed without farming and residences
(Figure 1), demonstrated similar [B] as the rainwater samples
(6–8 ppb) and somewhat higher δ11B values (27.5 to 32.7h;
Table 1). These protected ponds are fed by precipitation and
should therefore represent the average annual precipitation δ11B
and [B] endmember.

Private wells to depths of 30 and 90 m in the Upper Glacial
aquifer (town of Old Field; Figure 1) give a range of [B] of 18–
47 ppb and a range of δ11B of 19.6 to 36.6h (Table 1). In contrast,
one well from the town of Smithtown (Metcalf) was higher in
[B] (67 ppb) and lower in δ11B (11h; Table 1). Water collected
along two spring-fed creeks (Setauket Mill Pond and Stony Brook
Mill Pond) were enriched in [B] (17–25 ppb) and isotopically low
(δ11B = 9.0–15.8h; Setauket Pond 2E; Table 1) as compared to
inland groundwaters. A total of 10 coastal seawater samples were
collected along the shoreline of Port Jefferson Harbor; the mean
(± standard deviation) δ11B is 39.4± 0.2h for a [B] of 3580 ppb
and a salinity of 27 psu.

Anthropogenic and Animal Sources
The public water supply is used for agricultural and homeowner
irrigation; therefore, tap water was used to leach a variety of
fertilizers and manure samples. The tap water has relatively
low [B] (11 ppb) and elevated δ11B (34.9h; Table 1). Leaching
with tap water produced a range of [B] and while it is
understood that farming and lawn practices are not mimicked
by our leaching experiments and attenuation is expected, the
δ11B values are used in ensuing mixing models (see section
“Identifying Potential Sources of Groundwater Nitrate Using
Boron Stable Isotopes”). The differences in [B] availability
through these qualitative leaching experiments provides order
of magnitude concentrations and shows differences among the
various potential B sources. The δ11B values for five commonly
applied commercial fertilizers (Scotts Thick’R Lawn, Holly Tone,
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TABLE 1 | Summary of B concentration and δ11B isotopic values for natural
waters, including precipitation, protected precipitation-fed lakes, spring-fed
ponds, groundwater wells, public tap water, and seawater.

Sample type δ11B (hhh) B (ppb) Lat Lon

Precipitation

SBU Rain 1 12.7 13 40.9570 −73.1251

SBU Rain 2 33.4 6 40.9570 −73.1251

SBU Rain 3 21.3 9 40.9570 −73.1251

SBU Rain 4 15.6 7 40.9570 −73.1251

Precipitation-fed lakes (protected)

Lake Panamoka 27.5 7 40.9217 −72.8543

Ridge Lake 30.9 8 40.9169 −72.8568

Tarkill Pond 32.7 6 40.9167 −72.8551

Spring-fed ponds

Stony Brook Mill Pond 1 15.8 24 40.9149 −73.1468

Stony Brook Mill Pond 2 14.2 25 40.9145 −73.1461

Setauket Pond 2A 10.9 24 40.9464 −73.1152

Setauket Pond 2C 9.5 28 40.9441 73.1158

Setauket Pond 2D 10.8 25 40.9452 −73.1152

Setauket Pond 2E 9.0 17 40.9452 −73.1152

Groundwater wells

Metcalf (Smithtown) 11.0 67 40.9589 −73.0069

29B Fuller (Old Field) 19.6 47 40.9560 −73.1289

21A Johnson (Old Field) 36.6 18 40.9568 −73.1288

Johnson #2 (Old Field) 36.6 20 40.9570 −73.1283

33B Wooton (Old Field) 36.0 26 40.9570 −73.1283

Public (tap) water 34.9 11

Seawater

Port Jefferson Harbor (n = 10) 39.4 3580 40.9664 −73.0781

TABLE 2 | Summary of potential contaminant endmember δ11B isotopic values
analyzed, including fertilizers, animals waste and septic waste.

Sample type δ11B (hhh) B (ppb)

Fertilizers

Scotts Thick’R LawnTM 12.6 349

Holly ToneTM 7.4 4000

10–10–10 11.9 1310

5–10–5 4.9 2500

MilorganiteTM
−4.4 405

Animal waste

Commercial manure 25.9 92

Goose droppings 25.8 75

Septic waste

59R Sewage −0.2 1275

9B Sewage 2.5 250

CSH Sewage 2.1 105

10–10–10, 5–10–5, and MilorganiteTM) analyzed ranged from
−4.4 to 12.6h (Table 2). In contrast, commercial manure
(animal source unknown) was higher in δ11B (25.9h), and
similar to that of Canada goose manure collected from Stony
Brook University’s campus (25.8h; Table 2). The δ11B of
three septic samples ranged between −0.2 and 2.5h (Table 2).
MilorganiteTM is the heat-treated residue from microbes that

were used to break up solids in the public wastewater treatment
for the city of Milwaukee, likely accounting for its similar
composition (−4.4h) to the septic samples. These analyses were
conducted to better understand potential B endmembers, and N
isotope values were not measured.

Subterranean Estuary Groundwaters –
Concentrations
Callahans Beach
Groundwater salinity remained constant at depth (≤0.3 psu)
and waters were well-oxygenated (with dissolved oxygen,
[DO] > 5 mg L−1) at Callahans Beach (Table 3). DO was variable
with depth and was generally lower in August and September
than it was in the other 4 months. Groundwater pH generally
increased with depth but showed some variability being lower
in July (4.77–4.98) than at other times (4.80–5.89). [B] did not
show a statistically significant correlation with salinity (R2 = 0.22,
excluding a high outlier from 6 m depth in July) or with NO3

−

concentrations (Table 3 and Figure 2). B concentrations were
variable with depth for each month, ranging from 14 to 47 ppb,
with one elevated salinity sample at 73 ppb (Table 3). NO3

−

concentrations in groundwater from Callahans Beach ranged
from 3.7 to 19.3 mg L−1 (as NO3

−) with a mean (± standard
deviation) of 12.7 ± 4.6 mg L−1 (Table 3 and Figure 2B). NO3

−

concentrations were elevated during June through September
and decreased from October through December 2017. NH4

+ was
present at trace levels through the summer and increased slightly
in November and December. These differences may have been
driven by changes in regional precipitation. October 2017 had
about 150 mm of total rainfall, while November and December
2017 had about 50 mm of total rainfall. Tamborski et al. (2017a)
monitored these same wells over a 12-month period (2014–2015),
during which NH4

+ concentrations were negligible and NO3
−

was the dominant form of inorganic N.

Iron Pier Beach
At Iron Pier Beach, groundwater salinity was relatively constant
with depth (<0.5 psu), with slightly elevated salinities in July
(<2 psu; Table 4). DO generally decreased with depth but all
samples were well-oxygenated (>5 mg L−1); DO was slightly
higher in summer than in winter. There was variability in pH
with depth and pH was lower in June (4.98–5.07) than at other
times of the year (5.10–5.92). On average, B concentrations at
Iron Pier Beach were higher than those at Callahans Beach (16–
98 ppb), variable with depth and were not correlated with salinity
(Table 4 and Figure 2A). NO3

− concentrations were consistently
higher at Iron Pier Beach than those at Callahans Beach. The
mean (± standard deviation) groundwater NO3

− concentration
was 28.2± 9.3 mg L−1 with a range of 9.3 to 52.6 mg L−1. NO3

−

concentrations showed no seasonal differences and generally
increased with depth, with minor amounts of NH4

+ (Table 4).

Subterranean Estuary Groundwaters –
Stable Isotopes
Groundwater samples from Callahans Beach collected in
2017 gave δ15N-NO3 values that ranged from 1.9h to
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TABLE 3 | Callahans Beach coastal groundwater samples collected in 2017.

Well Date Depth T Salinity DO pH ORP NOx NH4
+ B δ15N δ18O δ11B

m ◦◦◦C mg L−1 mV mg L−1 mg L−1 ppb hhh - air hhh - VSMOW hhh

CH2 Jun-17 −3 na na na 4.98 83 19.3 0.0 27 3.6 2.2 33.0

CH3 Jun-17 −5 na na na 5.22 73 18.0 0.0 27 3.8 0.0 29.0

CH4 Jun-17 −6 na na na 5.38 48 18.0 0.0 26 3.8 −0.1 23.7

CH5 Jun-17 −7 na na na 5.34 61 9.1 0.0 26 3.8 −0.1 37.1

CH2 Jun-17 −3 17.1 0.28 9.4 4.80 216 16.1 0.0 24 3.2 −0.4 31.1

CH3 Jul-17 −5 16.4 0.27 10.0 4.77 209 14.6 0.0 24 3.6 0.6 25.9

CH4 Jul-17 −6 17.3 9.36 8.8 4.80 197 16.7 0.0 73 3.6 1.1 42.2

CH5 Jul-17 −7 16.4 0.29 9.5 4.79 202 6.4 0.0 24 4.2 0.6 36.5

CH2 Aug-17 −3 25.6 0.28 5.7 5.29 256 10.7 0.0 26 4.0 1.3 32.0

CH3 Aug-17 −5 23.9 0.24 6.8 5.59 253 15.8 8.3 28 3.9 0.3 32.0

CH4 Aug-17 −6 23.1 0.26 6.5 5.66 272 17.1 0.0 27 3.1 1.0 27.8

CH5 Aug-17 −7 na 0.24 6.4 5.55 257 7.9 0.0 27 4.6 0.5 39.6

CH2 Sep-17 −3 14.4 0.22 8.3 5.45 293 13.5 0.0 47 4.1 1.2 39.6

CH3 Sep-17 −5 14.4 0.22 8.0 5.53 308 15.1 0.0 27 4.2 1.3 35.9

CH4 Sep-17 −6 14.1 0.21 7.6 5.87 346 16.0 0.0 27 2.8 1.3 41.9

CH5 Sep-17 −7 14.1 0.22 8.0 5.68 336 3.9 0.0 26 4.7 0.9 29.6

CH2 Oct-17 −3 19.0 0.21 7.7 5.46 253 15.0 0.0 25 4.1 0.2 37.6

CH3 Oct-17 −5 21.2 0.22 6.5 5.42 264 14.0 0.0 19 4.0 1.0 31.4

CH4 Oct-17 −6 20.0 0.22 7.8 5.60 238 17.3 0.0 16 1.9 1.5 40.2

CH5 Oct-17 −7 18.7 0.23 6.7 5.56 250 4.8 0.0 22 4.6 1.1 27.6

CH2 Nov-17 −3 7.4 0.25 9.5 5.40 341 12.0 0.0 19 na na 39.7

CH3 Nov-17 −5 6.2 0.26 9.0 5.68 289 12.6 3.2 16 na na 34.4

CH4 Nov-17 −6 5.8 0.27 9.2 5.70 308 3.7 2.4 15 na na 42.5

CH5 Nov-17 −7 6.1 0.27 9.9 5.89 325 12.3 0.7 17 na na 29.2

CH2 Dec-17 −3 4.8 0.29 10.0 5.87 266 13.8 0.2 17 na na 36.3

CH3 Dec-17 −5 5.0 0.29 9.2 5.67 291 12.4 0.5 18 na na 30.7

CH4 Dec-17 −6 4.3 0.31 9.8 5.86 238 3.5 0.7 14 na na 27.0

CH5 Dec-17 −7 4.5 0.29 9.3 5.72 308 15.0 0.8 18 na na 39.1

na, not analyzed.
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FIGURE 2 | (A) Coastal groundwater salinity vs. δ11B with point size reflecting B concentration (A); B concentration vs. δ11B with point size reflecting NO3
−

concentration (B) and NO3/B vs. δ11B with point size reflecting NO3
− concentration (C). The range of seawater (∼0.5 mg N L−1) and precipitation (∼1 mg N L−1) in

panel (C) are represented by dashed black and blue rectangles, respectively.

4.7h and δ18O-NO3 values that ranged from −0.4h to
2.2h (Figure 3A). δ15N-NO3 was slightly lower at 6 m
depth (sample ID = CH4) than at other depths during
August, September, and October (Table 3). δ18O-NO3 values
were generally variable at depth without an obvious trend.
The δ11B of groundwater at Callahans Beach ranged from
23.7h to 42.5h with a concurrent change at 6 m depth
(Table 3). δ11B was significantly higher from July to October,
but lower during June, and showed no trend with NO3

−

concentrations (Figure 2B).
Iron Pier Beach groundwaters had a similar range of δ15N-

NO3 values (0.5h to 5.0h) as Callahans Beach (Figure 3A).
δ15N-NO3 values at Iron Pier Beach generally increased with
depth (Table 4), while δ18O-NO3 values were highest at a depth
of 3 m. δ11B values were generally lower at Iron Pier Beach
than groundwater samples from Callahans Beach and ranged
from −2.1h to 35.7h (Table 4 and Figure 2) and displayed a
significant positive correlation with B concentration (R2 = 0.56;
Figure 2B). Groundwater NO3/B ratios were significantly greater
than seawater and precipitation endmembers for both sites
(Figure 2C), demonstrating a significant input of anthropogenic
NO3

− to the STE.

DISCUSSION

Subsurface Processes and Variability
Groundwater pH was low at both sites (Tables 3, 4) and
was not correlated with [B] or δ11B. Therefore, B isotopic
signatures are unlikely to be affected by sorption and should only
reflect nitrogen source compositions or mixing processes. Coastal
groundwaters at both sites were well oxygenated (Tables 3, 4);
despite this, denitrification may occur in sedimentary anoxic
micro-sites (Brandes and Devol, 1997). There was no evidence
of denitrification in the STE (Figure 3A), assuming that
denitrification results in a δ18O to δ15N ratio of 2:1 (Kendall
et al., 2008). This is further supported by comparing δ15N with
ln[NO3

−] and 1/[NO3
−] (Figure 4). Denitrification should result

in trends distinctive from that induced by binary mixing. The
narrow range of δ15N for the coastal groundwaters coupled
with overlapping signatures of δ15N in potential endmembers

(Figure 3A) precludes using N alone to untangle mixing
sources (Figure 4).

There were no seasonal changes in δ15N-NO3
− and δ18O-

NO3
− at Iron Pier Beach, but there were differences with

depth (Table 4). The groundwater at 1.5 m depth had a
lower δ15 N value relative to the other groundwater samples
at Iron Pier Beach. Lower isotope values for samples at
1.5 m depth may be explained by nitrification processes within
the STE where oxic conditions are persistent (Kroeger and
Charette, 2008), especially at this shallow depth. Alternatively,
differences may be related to geologic heterogeneity. At Callahans
Beach, fresh groundwaters at 6 m depth were lower in δ15N-
NO3

− with variable δ11B, compared to shallower and deeper
groundwaters (Table 3). This depth horizon is geologically
distinct from neighboring sediments. Indeed, Tamborski et al.
(2017b) observed significant radon, radium, and dissolved Mn2+

enrichments at this depth horizon. Geologic heterogeneity
can act to both modify groundwater flow paths and enhance
biogeochemical transformations within the STE (Heiss et al.,
2020). However, denitrification cannot explain the differences in
δ15N-NO3

− and δ18O-NO3
− compositions (Figures 3A, 4). In

the ensuing analysis, we thus interpret changes in stable isotopes
to reflect changes in groundwater N (and B) sources, rather than
from a biogeochemical process or cycle, unless explicitly stated.

Potential Sources of Groundwater
Nitrate Using Nitrate Stable Isotopes
The nitrogen and oxygen isotope values of NO3

− in groundwater
from Callahans Beach show no seasonal trends (Table 3). The
samples from this study are similar in δ15N-NO3

− to previously
measured values at that site from 2014 and 2015 (Tamborski et al.,
2017a); however, the 2017 samples span a much narrower range
in δ18O-NO3 (Figure 3A). Samples from both Callahans Beach
and Iron Pier Beach plot in the overlapping fields of nitrification
of NH4

+ in fertilizer and precipitation, soil NH4
+, manure and

septic waste (Figure 3A). Previous studies at Callahans Beach
attributed the δ15N and δ18O of groundwater NO3

− to either
nitrification of septic waste, or to mineral fertilizer (Tamborski
et al., 2017a). Studies of drinking supply well samples collected in
Northport, a sewered community to the southwest of Callahans
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TABLE 4 | Iron Pier Beach coastal groundwater samples collected in 2017.

Well Date Depth T Salinity DO pH ORP NOx NH4
+ B δ15N δ18O δ11B

m ◦◦◦C mg L−1 mV mg L−1 mg L−1 ppb hhh - air hhh -VSMOW hhh

IP1 Jun-17 1.5 18.4 0.23 12.9 4.98 54 29.9 0.0 31 0.5 1.9 11.4

IP2 Jun-17 3 19.4 0.20 9.4 5.41 77 28.6 0.0 37 3.8 6.7 −1.6

IP3 Jun-17 4.5 18.4 0.31 10.3 5.07 105 52.6 0.1 43 4.7 −0.2 16.1

IP1 Jul-17 1.5 18.6 1.29 9.8 5.87 170 12.4 0.0 92 0.6 1.9 31.9

IP2 Jul-17 3 16.8 1.58 10.1 5.57 147 26.6 0.0 63 3.6 6.5 28.3

IP3 Jul-17 4.5 16.5 0.37 10.2 5.35 123 26.8 0.0 47 4.4 1.1 14.9

IP2 Aug-17 3 19.1 0.28 6.9 5.64 288 27.1 0.0 16 3.7 7.0 −2.1

IP3 Aug-17 4.5 18.0 0.28 7.6 5.68 319 27.0 0.1 41 4.0 3.7 6.6

IP1 Oct-17 1.5 15.6 0.25 8.4 5.82 184 25.2 0.0 23 0.8 2.7 3.9

IP2 Oct-17 3 12.5 0.23 8.4 5.59 230 25.8 0.0 59 3.2 6.2 8.3

IP3 Oct-17 4.5 12.6 0.34 7.8 5.72 120 37.7 0.0 98 5.0 0.9 35.7

IP1 Nov-17 1.5 8.2 0.25 9.3 5.10 250 9.3 0.8 20 na na 22.7

IP2 Nov-17 3 7.8 0.27 8.7 5.72 302 30.1 0.0 40 na na 2.5

IP3 Nov-17 4.5 7.4 0.38 8.6 5.92 321 25.7 0.0 75 na na 17.6

IP1 Dec-17 1.5 7.4 0.30 9.6 5.72 262 25.2 0.0 60 na na 11.8

IP2 Dec-17 3 7.1 0.39 8.9 5.84 3 30.2 0.2 20 na na −1.1

IP3 Dec-17 4.5 7.1 0.42 9.0 5.90 260 39.9 0.5 42 na na 15.9

na, not analyzed.
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FIGURE 3 | (A) δ15N-NO3 vs. δ18O-NO3 of coastal groundwater samples. Callahans 2014/2015 data from Tamborski et al. (2017a). Northport data from Bleifuss
et al. (2000). Source fields modified from Kendall et al. (2008). (B) δ15N-NO3 vs. δ11B. The δ15N-NO3 source fields are from Kendall et al. (2008) and the δ11B ranges
are based on a survey of possible sources on Long Island as well as the ranges reported by Vengosh et al. (1994, 1999), Bassett et al. (1995); Komor (1997), Seiler
(2005), Widory et al. (2005), Tirez et al. (2010), and Eppich et al. (2013). Only select samples from Callahans 2014/2015 are included (salinity ≤ 0.3).

Beach, have NO3
− concentrations less than 10 mg L−1 (Bleifuss

et al., 2000). These sewered community groundwaters have
higher δ15N-NO3

− values compared with those from Iron Pier
and Callahans Beach (hollow black circles; Figure 3A). The δ15N-
NO3

− and δ18O-NO3
− values from the Northport supply wells

were attributed to nitrification of NH4
+ in fertilizer, with small

inputs from septic waste (Bleifuss et al., 2000); we note that the
soil NH4

+ and manure/septic waste source fields also overlap in
δ15N-NO3

− for these supply well samples (Figure 3A).
Residences in the watershed of Callahans Beach are unsewered

and use individual, homeowner septic systems for wastewater
disposal (i.e., cesspools); thus, a septic waste N signature
is expected for Callahans Beach. Callahans Beach is located
immediately down-gradient of a golf course, and in the vicinity
of communities that fertilize their lawns (Figure 1), and so a
N and B source from fertilizers is also expected. Based on the
δ15N-NO3

− and δ18O-NO3
− data and the endmember source

fields identified in Kendall et al. (2008), it is unclear what
the dominant source of NO3

− is to the groundwaters of the
Callahans Beach STE (Figure 3A). Iron Pier Beach is located
down-gradient from agricultural fields, so a fertilizer source for
the NO3

− was expected. Based on δ15N-NO3
− and δ18O-NO3

− is
unclear, however, if the Iron Pier Beach samples are sourced from
nitrification of NH4

+ in fertilizer and precipitation, soil NH4
+,

manure or septic waste.

Identifying Potential Sources of
Groundwater Nitrate Using Boron Stable
Isotopes
Stable isotope measurements of δ15N-NO3

− and δ18O-
NO3

− are unable to discriminate NO3
− sources in the STE,

despite local knowledge of each study site’s primary NO3
−

sources. Comparison of δ15N and δ11B values has allowed
the discrimination of anthropogenic NO3

− sources in other
terrestrial and aquatic-based studies (Komor, 1997; Widory et al.,
2004, 2005, 2013; Seiler, 2005; Bronders et al., 2012; Lindenbaum,
2012; Briand et al., 2013, 2017; Eppich et al., 2013; Saccon et al.,
2013; Guinoiseau et al., 2018; Kruk et al., 2020). Callahans Beach
and Iron Pier Beach have distinct land-use patterns within their
respective coastal watersheds (Figure 1). A posteriori knowledge
of each site, and of the Long Island region (Bellone, 2015),
provides a unique opportunity to compare “known” nitrogen
sources to those estimated from δ11B and δ15N-NO3

− versus
δ18O-NO3

−.

Endmember Mixing and N Sources
Comparison between δ11B and δ15N provides qualitative
information on potential groundwater N sources (Figure 3B).
Endmember source fields of δ11B from this study (Tables 1,
2), with additional constraints as summarized by Eppich et al.
(2013), suggests that groundwater NO3

− for Iron Pier Beach is
derived from either nitrification of NH4

+ in fertilizer or septic
waste. In contrast, groundwater NO3

− at Callahans Beach is
interpreted to reflect either nitrification of NH4

+ in precipitation
or an animal manure source. Precipitation can supply, at most,
1 mg L−1 of NO3

− to the groundwater system of Long Island;
therefore, precipitation is not the primary source of the observed
N concentrations (Table 3) or δ11B (Figures 2C, 5). Binary
mixing models were used to investigate theoretical mixing
between different sources of B in the STE. Assuming that B
is not attenuated by in situ biogeochemical processes, then
mixing between two different endmembers may be quantitatively
approximated as:

[B] = C∗1X + C∗2(1 − X) (1)
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δ11B = ((δ11B∗1C∗1X) + (δ11B∗2C∗2(1 − X)))

/(C∗1X + C∗2(1 − X)) (2)

where X is the fraction of endmember 1 in the coastal
groundwater, C1 and δ11B1 are the concentration and isotope

FIGURE 4 | Natural logarithm of NO3
− vs. δ15N (A) and 1/[NO3

−] vs. δ15N
(B) of coastal groundwater samples.

composition of endmember 1 and C2 and δ11B2 are the
concentration and isotope composition of endmember 2.
Estimated endmembers (Figure 5) were used to investigate
potential mixing relationships between natural sources
(precipitation or seawater) with contaminant sources B (fertilizer,
septic waste or animal waste). We note that endmember mixing
models may be improved with a Bayesian statistical analysis,
which accounts for the degree of overlap and uncertainty
of different sources (Ransom et al., 2016); however, a more
comprehensive analysis of potential endmembers is required
here. The two different subterranean estuaries studied have
relatively distinct ranges of δ11B (Figure 2) and therefore we
treat each site as a separate system in the ensuing discussion.

Iron Pier Beach
Agriculture dominates the lower population density (470 people
km−2) watershed of Iron Pier Beach. Groundwater NO3

− at this
site should be derived from mineral fertilizers. Fresh groundwater
samples from Iron Pier Beach are systematically lower in δ11B
compared to Callahans Beach (Figure 2). Iron Pier groundwater
δ11B increases nearly linearly with increasing B concentration
(Figure 2B), suggesting that binary mixing occurred between
an isotopically enriched B source and an isotopically depleted,
lower [B] source. Precipitation has isotopically high δ11B but
is too low in [B] to explain the higher δ11B values of the Iron
Pier groundwater (Figure 5). Animal manure is an alternative
endmember; however, three coastal groundwater samples are
higher in δ11B than the two measured manure samples (Figure 5).
Either two samples are insufficient to adequately characterize the
δ11B of animal manure (Eppich et al., 2013), or this is not an
appropriate endmember for this site.

Seawater has elevated δ11B and [B] and may therefore
constitute one endmember for Iron Pier Beach (Figure 5).
Groundwater salinities are on the order of 0.3 psu (Table 4);
direct mixing between a contaminant endmember and seawater
(25–28 psu) would mean that seawater contributes between 1 and
2% of the observed salinity. This amount of seawater [B] could be

FIGURE 5 | Log of 1/B vs. δ11B of coastal groundwater samples and different endmembers analyzed in this study.
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FIGURE 6 | Log of 1/B vs. δ11B of coastal groundwater samples from Iron Pier Beach (A) and Callahans Beach (B). In panel (A), theoretical mixing between sea
spray and fertilizer (orange curves) assumes that sea spray constitutes 5% of the B concentration of seawater, and that B retention from plants is between 85 and
95% of the applied fertilizer load. The horizontal orange dashed lines indicate the range of fertilizer δ11B (MilorganiteTM [–4.4h] to Scotts Thick’R LawnTM [12.6h])
over a B concentration range of 20–60 ppb. In panel (B), the dashed curves show mixing between coastal precipitation with possible contaminant endmembers,
and solid curves show mixing between sea spray and possible contaminant endmembers, including fertilizer (9h), septic waste (1.5h) and animal manure (26h).
Coastal precipitation is set as the highest observed δ11B signature for Callahans Beach (15 ppb, 42.5h). Manure B concentrations are 20% of the laboratory
leached concentration. Fertilizer δ11B is the average of analyzed fertilizer leaches, excluding MilorganiteTM; septic waste δ11B is the average of the analyzed septic
waste samples (Table 2).

delivered via sea spray that is diluted by rainfall. Septic waste and
fertilizer endmembers (Table 2) are isotopically light enough to
serve as the second endmember for Iron Pier Beach. However,
B concentrations of the leaches are 1–3 orders of magnitude
higher (lower 1/B; Figure 5) than the isotopically lowest δ11B
groundwater sample (16 ppb; −2.1h; Table 4). The [B] of the
fertilizers determined from the leaching experiments are not
representative of a natural system. Borate minerals are added to
commercial fertilizers because B is an essential micro-nutrient for
plant growth (Shireen et al., 2018); therefore, a significant fraction
of the B from a fertilizer application should be retained by the
plant-root system. Further, the leaching experiment used a small

amount of water so the leach is much more concentrated than
what would be found in irrigation water even if the plant roots
were inefficient at utilizing the B.

Theoretical mixing between highly diluted sea spray and
fertilizers reasonably explains the coastal groundwater B data of
Iron Pier Beach (Figure 6A). These mixing curves represent an
isotopically light fertilizer (Table 2) assuming that 5, 10 or 15%
of the applied B is lost to the groundwater system. Note that a
higher δ11B signature for fertilizer (12.6h) would simply shift
these mixing curves upward toward higher δ11B values, assuming
that B concentration ranges remain the same (Figure 6A). Given
these assumptions, groundwater N at Iron Pier Beach must be
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FIGURE 7 | Summary of δ11B (left) and δ15N (right) endmember isotope ratios of coastal groundwaters. Dotted boxes reflect natural sources or processes. Dashed
boxes reflect anthropogenic contaminant sources. δ11B ratios constrained from Tables 1, 2. δ15N ratios from Kendall et al. (2008).

predominantly sourced from nitrification of NH4
+ in fertilizer

(Figures 3B, 6A), consistent with our working knowledge of this
agricultural coastal system. Notably though, there is no trend
in NO3

− with [B] (Figure 2B), and therefore a simple two-
component mix cannot explain the source of NO3

− at Iron Pier
Beach using N alone (Figure 4).

Callahans Beach
Callahans Beach is directly down-gradient from medium-density
residential housing (2770 people km−2) and a public golf course.
Groundwater NO3

− at this site should be derived from septic
(i.e., cesspool) waste, with minor contributions from fertilizers.
The coastal groundwater δ11B of Callahans Beach reflects a much
heavier δ11B source compared to measured septic waste (−0.2 –
2.5h) and fertilizer (Table 2). Anthropogenic B compounds
used in detergents and cleaning products have a δ11B signature
between −5 and 1h (Vengosh et al., 1999), such that the δ11B
signature of the measured septic waste may be dominated by
detergents, rather than human waste.

The highest δ11B signatures (>39h) suggest a contribution
of B from seawater, although coastal groundwater salinities
are low (<0.3) and do not show a trend with [B] or δ11B
(Figure 2A). Sea spray was invoked as the isotopically high
δ11B endmember for Iron Pier Beach (Figure 6A). At Callahans
Beach, B concentrations are systematically lower than Iron
Pier Beach, and so despite appreciably high δ11B signatures,
[B] cannot be explained by sea spray alone. δ11B signatures
higher than seawater isotope values may be derived from
boric acid volatilization of seawater (Chetelat et al., 2005). The
highest δ11B we measured for rainwater is 33.4h (Table 1),
but coastal precipitation can be much heavier (Chetelat et al.,
2005). Therefore, we suggest that the high δ11B endmember of
Callahans Beach results from boric acid volatilization of seawater,

resulting in a higher δ11B coastal precipitation endmember
(Figure 6B). The highest δ11B value for Callahans Beach,
42.5h (CH4, November 2017; Table 3) has relatively low
NO3

− concentrations (3.7 mg NO3
− L−1 or 0.84 mg N

L−1), similar to the N concentration of regional precipitation
(Suffolk County Government, 2019). In the ensuing analysis, this
sample is assumed to represent the B endmember of regional
coastal precipitation.

Mixing relationships between sea spray and coastal
precipitation were examined with respect to septic waste
(1.5h), animal manure (26h) and fertilizer (9h; Figure 6B).
Sea spray B concentrations were assumed to represent 5% of
measured seawater concentrations. Notably, because there is little
change in [B] for a large range in δ11B, no single mixing curve
will fit all of the Callahans Beach data. Therefore, it is not possible
to demonstrate with certainty using B whether the N source is
derived from fertilizer or septic waste (via individual homeowner
cesspools). However, the range of values demonstrates that there
is not one single endmember, consistent with our knowledge
that groundwater NO3

− within this watershed is derived from
multiple non-point sources.

Coastal groundwaters collected during 2014 and 2015
are distinct in δ18O-NO3

− and δ11B compared to samples
from the same wells collected during 2017 (Figure 3). The
B signatures of several 2015 samples match precipitation
endmember B signatures, suggesting that recently recharged
groundwaters obtain B and N from precipitation (Figure 6A).
Importantly, this data demonstrates annual variability in
groundwater flow and contaminant transport to LIS. While
coastal groundwaters collected throughout 2017 showed
relatively higher values of δ11B, it remains to be seen how
contaminant delivery varies over longer time periods for this
sole-source, unconfined aquifer.
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Synthesis and Conceptual Model
In the coastal systems studied here, B and NO3

− are added
to the groundwater system in different ways, and are impacted
by precipitation and seawater (sea spray versus boric acid
volatilization) differently (Figure 7). Precipitation and seawater
both have relatively low N concentrations (<1 mg L−1). Seawater
is a distinct endmember, due to its high [B] and its isotopically
high δ11B signature (Figure 7). Boric acid volatilization of
seawater produces isotopically high B, and thus gives a
very distinctive low B concentration endmember for coastal
precipitation. It is interesting that two subterranean estuaries
from similar settings have distinct sources of ‘uncontaminated’
waters. One has to consider differences in pathways for B from
both fertilizer and septic waste. In the case of fertilizer, plants
use B as a micro-nutrient, and so the concentration of B that
is added to the groundwater system will be lower than what
was applied to the land surface. In contrast, [B] in septic waste
does not change. Therefore, homeowner cesspools likely reflect
different sources of B and NO3

− to the groundwater system
(Figure 7). Septic waste δ11B integrates multiple contaminant
sources, including detergents, commercial cleaning products and
human waste. Given the low δ11B signature of septic waters
(Table 2), B in detergents must dominate the B signature of
septic waste. In contrast, human waste is the primary N source
in septic waste and therefore B and N are decoupled in septic
systems (Figure 7). Importantly, there is no relationship between
B and NO3

− concentrations in either of the studied subterranean
estuaries (Figure 2).

CONCLUSION

Application of boron isotopes in coastal settings is vulnerable
to the influence of seawater (via sea spray), which has
orders of magnitude higher boron concentrations compared to
various contaminant sources. Identification and discrimination
of NO3

− and B sources in coastal settings thus requires
(1) adequate characterization of local sources (both natural
waters and contaminants) and (2) an understanding of
biogeochemical processes within the STE. Coastal groundwaters
are collected from beaches in SGD studies to integrate terrestrial

groundwater flow paths over the entirety of the coastal
watershed and to account for any biogeochemical processes (i.e.,
denitrification) in the STE that would influence N concentration
and speciation prior to discharge. The advantage of collecting
coastal groundwater to account for N transformation may thus
hinder the utility of B as an auxiliary N source tracer if seawater
significantly modifies subsurface geochemical signatures. The
results from this study demonstrate the utility of multi-isotope
tracing techniques to identify N sources in polluted coastal
aquifers. Future studies should explicitly measure isotopic values
of different possible endmembers in order to constrain local
variability in N and B sources.
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